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Abstract: In South Korea, we are aiming for net zero energy use apartment home structures. Since the
apartment structure in South Korea is generally a high-rise of 10 or more floors, the types of renewable
energy applicable are limited to photovoltaic (PV) panels, solar collectors installed on the wall,
or a photovoltaic thermal (PVT) hybrid panel combining both. In this study, the effect of PV,
ST (Solar Thermal), and PVT systems on greenhouse gas reduction was analyzed using TRNSYS18.
All three systems showed maximum CO2 reductions at 35◦ facing south. PV, ST, and PVT showed
CO2 reductions of 67.4, 114.6, and 144.7 kg_CO2/m2

·year, respectively. Compared to those values,
when installed on a wall (slope of 90◦), CO2 reduction is about 35–40% less and about 20% less at a
slope of 75◦. ST and PVT installed on the vertical wall have a greater greenhouse gas reduction effect
than the PV installed at the optimal slope of 35◦. Since the CO2 reduction difference among SW, SE,
and azimuthal S is within 10%, ST and PVT are recommended for installation on high-rise apartment
structure walls or balconies with the azimuthal angle of ±45◦ with respect to south.

Keywords: solar thermal system; photovoltaic; photovoltaic thermal; CO2 reduction; energy
production; TRNSYS18; high-rise apartment

1. Introduction

In response to the Paris Climate Change Accord for reducing greenhouse gases, South Korea has
announced a strategy to expand its new 2030 energy industry [1]. In the energy construction field,
standards for reducing greenhouse gases are being strengthened. In particular, Zero Energy Building
is to become mandatory for new buildings from 2025 with plans to start in the public sector (2020) and
expand to the private sector (2025). Hence, it is essential to introduce renewable energy along with
high factor insulation, high performance windows, and heat recovery ventilation systems.

According to South Korea’s national indicator system, the total number of households in the
residential sector in 2018 was 19,979,000, of which about 9,550,000 were apartments. A large-scale
refurbishment of ≥30-year-old apartment structures has recently been pursued, especially in the Seoul
metropolitan area. According to Seoul ordinance, 14% or more of the expected energy consumption per
total area of 100,000 m2 must be covered by renewable energy sources. South Korean apartments are
mostly high-rise structures with more than 10 floors, and the only renewable energy devices that can
be applied to high-rise buildings are PV panels or solar collectors installed on walls or balconies [2,3].

PV systems have experienced price reductions and improvements in efficiency through continuous
research and development of modules [2]. Moreover, due to solar PV expansion policies in many
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countries and even the attainment of grid-parity in some countries, sustained growth is anticipated in
the outdoor PV and building Integrated Photovoltaic (BIPV) markets [4–6]. For solar thermal systems,
since 2000, attempts have been made mainly in Europe to develop a building-integrated solar collector
that can be used as a building exterior material such as a BIPV module [7–9]. Facade-integrated solar
collectors in particular have been used in houses in places such as Austria and Germany since the late
1990s [10,11]. Recently, in China, examples of one or two solar collectors on the walls or balconies of
apartment houses have become common [12].

The growth of PV supply among renewable energy materials is remarkable both domestically and
overseas [13,14]. In South Korea, PV is more widely used for power generation in parking lots and
on factory roofs rather than for residential building consumption [15,16]. There are social problems
such as some environmental destruction and ESS (Energy Storage System) fires when PV panels are
installed in forests and at reservoirs, but it is certain that this is an advantageous method that can send
produced energy over long distances. Solar thermal systems, on the other hand, are at a disadvantage
for long-distance transportation, and they are more advantageously installed in or near buildings [16].
In general, solar thermal systems are installed on a building rooftop and are widely used for hot water
and heating [17–19]. Overseas, BIST (Building Integrated Solar Thermal), which can be installed more
flexibly, is being applied as a pilot project [4,20].

PV systems on apartment structures, which account for most building energy consumption,
are multiplying in some municipalities, including Seoul. Solar thermal systems have been installed
on the roofs of apartment houses and are used as a common heat source but their contribution
is insignificant. For greenhouse gas reduction, it is time for more active application to apartment
structures, along with redevelopment plans for existing apartments.

In this study, we calculated energy production and CO2 reduction by slope and azimuth when
a solar thermal collector, a PV panel, and a PVT hybrid system combining both were installed on a
rooftop or outer wall in a South Korean apartment structure [21]. Through this, objective data can
be generated to understand and quantify how much greenhouse gas reduction is achieved when the
system is introduced in a limited area.

2. Simulation Method and System Modeling

Forms of renewable energy applicable to urban houses, especially high-rise residential structures,
are very restricted. With the technology commercialized to date, solar energy is the only relevant
solution. The rooftop or roof can be used on the top floor of detached buildings or high-rise apartments,
but other households are compelled to use exterior walls. Despite their different uses, both PV and
ST systems have become widespread, and PVT hybrid system combining these two has also reached
the stage of commercialization [22,23]. Although direct comparison is not easy, we simulated systems
consisting of products whose performance and price are the average in South Korea.

In this study, a simulation was performed using TRNSYS18 [24]. This software has been developed
for unsteady state simulation of solar energy systems and has been upgraded for about 40 years, and so
has been verified for dynamic analysis of ST and PV systems. To simulate with TRNSYS18, set values
for the components that make up the actual system must be secured. Since it is not possible to cover all
systems in South Korea, the solar thermal collectors and PV and PVT panels of E-MAX System Co., Ltd.
which has general performance were simulated. The weather data used for the simulation was TMY2
Seoul, which is in the TRNSYS18 internal library, and the simulation interval was 0.1 h, totaling to
8760 h (one year).

Since the object of this study is solar energy applied to high-rise apartments, installation is
restricted. As is well known, solar energy reaches its maximum production of the year when the slope
is similar to the local latitude. When installed on the rooftop, the slope is typically low, but installation
on the middle floors of the high rise structure is restricted to walls and balconies where panels
can be installed vertically or slightly inclined. Slopes were therefore set to 20◦, 35◦, 75◦, and 90◦.
Southern orientation of solar components is preferred in South Korea, which is located in the northern
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hemisphere, but, due to the arrangement of apartments, many are facing west or east. For that reason,
we included W, SW, S, SE, and E orientations to see the effects.

In the simulation, the ST system was used for a domestic hot water supply with a heat collection
area of 4.18 m2. The main components of the system are a flat-plate collector (Type1b) and a heat
storage tank (Type60d, 200 L) with a built-in heat exchange coil. The performance of the ST system
varies depending on the heat storage tank and the control method regardless of the collector, and,
in a previous study [25], the performance of the system shown in Figure 1 was compared through
simulations under various conditions. The most basic method is a heat exchange coil arranged only in
the lower part of the heat storage tank and a constant flow rate. Contrary to this lower installation of
heat exchange coil, our previous studies showed that the upper and side heating of the storage tank is
more effective for higher stratification performance [26], as upper heating increases the temperature
difference between the top and bottom of the storage tank. In such system, when the solar radiation
condition is not strong, it can be seen that operating only the bottom coil or reducing the flow rate
improves the solar energy collection efficiency by about 7%. In this study, the simulation was performed
with this improved method with lower and upper heating heat storage tank and three-stage flowrate.
Table 1 summarizes the specifications of the solar collector, heat storage tank, and pump applied to
the simulation.
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Figure 1. Schematic experimental set-up of solar combi-system. 3W.V, three-way valve; S.V, solenoid
valve; B.V, bypass valve.

The load pattern and quantity greatly affect the performance of the solar water heater. When the
load increases during the daytime, the temperature of the heat storage tank decreases, which leads to an
improvement in solar energy collection efficiency. Daily hot water load of 150 L/day, the temperature
of 60 ◦C, and the daily load of Cardinale et al. [27] in Figure 2 were applied. This is a typical usage
pattern in a general household, and peak usage is concentrated in the morning and evening. The city
water temperature is based on the monthly average value of the temperature at 1.5 m underground as
provided by the South Korea Meteorological Administration and is summarized in Table 2.

Simulations for PV systems are relatively simple. Electricity was assumed to be connected to a grid
and sent to a power company. A PV component (Type 194b) with an inverter was used. This component
is appropriate for modeling the electrical performance of monocrystalline, polycrystalline, and thin
film photovoltaic panels. Two modules in series with the same area (2.09 m2) as the ST system were set.
The performance data of the inverter were based on the default values built in TRNRSYS18, and Table 3
shows the important specifications required for the simulation.
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Table 1. Specification of the solar thermal system.

Component Category Unit Value

Collector

Area (Gross) m2 2.09

Fluid heat capacity kJ/kg·K 3.7

Tested flow rate kg/s·m2 0.01835

Intercept efficiency - 0.6997

Efficiency slope W/m2
·K 3.6964

Efficiency curvature W/m2
·K2 0.0104

Storage tank

Volume L 200

Height m 1.1

Material of heat exchanger - STS 304

Upper heat
exchanger

(smooth tube)

Diameter × Length m 15.8Φ × 5

Height
(Inlet, Outlet) m 0.962

0.881

Lower heat
exchanger

(smooth tube)

Diameter × Length m 15.8Φ × 7

Height
(Inlet, Outlet) m 0.175

0.067

Pump
Maximum flow rate kg/s 0.073

Maximum power W 16.7
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Figure 2. Daily load pattern (Cardinale et al. [27]).

Table 2. Average ground temperature in Seoul.

Category Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Temp
(◦C) 8.0 6.1 6.4 9.4 13.4 17.2 20.9 23.4 23.2 20.7 16.6 11.7

Figure 3 show a schematic diagram of the PVT system. The solar water heater is the same
as Figure 1, and the relatively low water temperature is augmented through the auxiliary heater.
The electricity produced was connected to the grid in the same way as PV. The configuration of the
simulation is the same as that of the ST system except for the PVT component (Type 50d) and the
inverter (Type 48b). Type 50d models a combined photovoltaic and thermal (PVT) solar collector by
adding a PV module to the standard flat-plate collector. It is available in the default TRNSYS library,
can be used with glazed and unglazed modules, and is the most widely used PVT Type. In the case of
Type 48b (Inverter), if the battery is fully charged or needs only a taper charge, excess power is either
dumped or not collected by turning off parts of the source. The inverter converts the DC power to AC
and sends it to the load and/or feeds it back to the utility. For fair comparison, the heat storage tank,
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load pattern, and control logic were all set identically. Inverter efficiency was set to 78%, similar to the
default value built into the Type 194b used for the PV system. Figure 4 shows the configuration of the
TRNSYS18 simulation of the PVT system, and Table 4 shows the specifications of the solar collector at
the bottom of the PVT. The PV module of PVT is the same as the on in Table 3.

Table 3. Specification of the photovoltaic system (STC: 25 ◦C, 1 kW/m2, Spectrum AM 1.5).

Category Unit Value

Module size m2 2.09

Open circuit voltage (Voc) V 48.8

Short circuit current (Isc) A 8.77

Maximum power (Pmax) W 332.6

Voltage at maximum power (Vmpp) V 39.6

Current at maximum power (Impp) A 8.41

Fill factor % 77.7

Module efficiency(ηC) % 15.9

Number of cells ea 72

Cell size cm2 242.7

Annual average horizontal solar radiation in South Korea: 4215 MJ/m2 [28].
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Table 4. Specification of the PVT system.

Collector

Type Flat Plate Solar Collector

Size 1042 mm × 2002 mm × 58 mm

Area Gross Area: 2.09 m2, Transmission Area: 1.92 m2

Tested flow rate 0.0385 kg/s

Intercept
efficiency 0.5299

Efficiency slope 4.5752 W/m2
·K

Efficiency
curvature 0.0206 W/m2

·K2

Absorber plate

Material: A.L Plate, Titanium coated aluminum absorber
Size : 985 mm × 1948 mm × 0.3 mm

Coating Titanium coating

Absorptivity 95.1%

Reflectance 3.7%

Tube Material: Copper
Size : Diameter Φ12.7 mm, Thickness 0.89 mm, Length 23231 mm

Operating fluid 15% Propylene glycol

Insulator

Material Thickness
(mm)

Density
(kg/m3)

Heat-resisting
Temperature

(◦C)

Thermal
Conductivity

(W/m·K)

Side EPDM 10 45 409 0.033

Bottom EPDM 20 45 409 0.033

The heat and electricity produced by the PVT module were analyzed using the mathematical
algorithm analysis method of TRNSYS 18 Mathematical

QPVT= A × Fr× (S − U L(T i − Ta)) (1)

Equation (1) is the same as general solar collector formula. The electricity production rate (PPVT)

and photovoltaic cell efficiency (ηPVT) were calculated using Equations (2) and (3).

PPVT= (τσ)nIAM × Gt × A × ηPVT (2)

ηPVT= ηc × Xt × Xr (3)

As the temperature of the panel rises, the temperature function Xt decreases, and electricity
production decreases. Annual thermal efficiency (ηth, year), electrical efficiency (ηel,year), and solar
fraction ( fyear ) are as follows.

ηth, year =

∑
QPVT∑

Gt
(4)

ηel,year =

∑
PPVT∑

Gt
(5)

fyear =

∑
QDHW −

∑
QAUX∑

QDHW
(6)
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3. Experimental Results and Discussion

Under the conditions described previously, simulations for PV, ST, and PVT were performed
at different slopes (20◦, 35◦, 75◦, and 90◦) and azimuthal angles (W, SW, S, SE, and E). From this,
we calculated the amount of heat generated by each system, electricity produced, and associated
reduction in CO2 production.

3.1. CO2 Calculation Method

The amount of CO2 reduced by use of renewable energy can be calculated by figuring the amount
of CO2 generated when the same amount of heat or electricity is produced on a fossil fuel basis.
Since the amount of CO2 generated depends on the type of fuel, it is reasonable to choose the one that
is most often used in apartments. For thermal energy, LNG (Liquefied Natural Gas), which accounts
for 71% of heating in the housing sector in South Korea (90% of boiler efficiency, low heating value
applied), was used as a reference [15]. In the case of electrical energy, there is an emission factor
announced according to the composition of fuel used for power generation by country, and the carbon
emission factor of South Korea is 0.1319 kg_C/kWh [29]. This value was applied to calculate the amount
of greenhouse gas reduction due to electricity produced by PV. Calories and carbon emissions were
calculated based on the data shown in Table 5.

Table 5. The conversion standard of energy units and IPCC carbon factor [16].

Category Unit
Upper Lower Carbon Emission

Factor

MJ kcal ×10−3 toe MJ kcal ×10−3 toe kg_C/GJ ton_C/toe

Crude oil kg 44.9 10,730 1.073 42.2 10,080 1.008 20.00 0.829

Gasoline L 32.6 7780 0.778 30.3 7230 0.723 18.90 0.783

Kerosene oil L 36.8 8790 0.879 34.3 8200 0.820 19.60 0.812

Diesel oil L 37.7 9010 0.901 35.3 8420 0.842 20.20 0.837

Natural gas
(LNG) kg 54.6 13,040 1.304 49.3 11,780 1.178 17.20 0.630

City gas
(LNG) Nm3 43.6 10,430 1.043 39.4 9420 0.942 15.30 0.637

City gas
(LPG) Nm3 62.8 15,000 1.500 57.7 13,780 1.378 17.20 0.713

Electricity
(generation) kWh 8.8 2110 0.211 8.8 2110 0.211 0.1319 kg_C/kWh

Electricity
(consumption) kWh 9.6 2300 0.230 9.6 2300 0.230 -

LNG CO2 emission calculation:

• Ton of oil equivalent (toe) = LNG Conversion (Nm3) × LNG Lower Heating Value (toe/Nm3)
• C emission (ton_C) = Ton of oil equivalent (toe) × LNG Carbon emission factor (ton_C/toe)
• CO2 emission (ton_CO2) = (CO2 (Molar mass 44)/C (Molar mass 12)) × C emission (ton_C)
• Example) 200 MJ energy production in Jan. when slope is 45◦. Boiler efficiency 90%, City gas

(LNG) LHV Conversion value is 5.64 Nm3

• Ton of oil equivalent (toe): 5.64 Nm3
× 0.942 × 10−3 toe/Nm3 = 5.31 × 10−3 toe

• C emission: 5.31 × 10−3 toe × 0.637 ton_C/toe = 3.38 × 10−3 ton_C
• CO2 emission: (44/12) × 3.38×10−3 ton_C = 12.39 × 10−3 ton_CO2
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Electrical energy CO2 emission calculation:

• Carbon (C) emission (kg_C) = Electrical energy production (kWh) × Carbon emission factor of
electrical energy (kg_C/kWh)

• Carbon dioxide (CO2) emission (kg_CO2) = (CO2 (Molar mass 44)/C (Molar mass 12)) × Carbon
emission (kg_C)

• Example) 10 kWh energy production in Jan. when slope is 45◦.
• C emission: 10 kWh × 0.1319 kg_C/kWh = 1.319 kg_C→ 1.4 × 10−3 ton_C
• CO2 emission: (44/12) × 1.319 kg_C = 4.84 kg_CO2→ 4.84 × 10−3 ton_CO2

3.2. Energy Production and CO2 Reduction by Slope

Table 6 shows the annual energy production and CO2 reduction as a result of simulating with the
azimuth fixed to the south and at the slope of 20◦, 35◦, 75◦, and 90◦.

Table 6. Energy production and CO2 reductions of the PV, ST, and PVT systems according to slopes.

Category 20◦ 35◦ 75◦ 90◦

PV

kWh/m2 137.4 139.4 111.9 90.9

kg_CO2/m2 66.4 67.4 54.1 44.0

Decreasing rate (%) −1.5 0.0 −19.7 −34.7

ST

MJ/m2 1756.1 1846.6 1427.8 1087.6

kg_CO2/m2 109.0 114.6 88.6 67.5

Decreasing rate (%) −4.9 0.0 −22.7 −41.1

PVT

kWh/m2 170.9 173.4 136.9 107.9

MJ/m2 949.9 980.5 751.3 563.6

kg_CO2/m2 141.6 144.7 112.8 87.2

Decreasing rate (%) −2.1 0.0 −22.0 −39.8

PV, photovoltaic; ST, solar thermal; PVT, photovoltaic thermal.

As expected, PV, ST, and PVT all showed the highest energy production and CO2 reduction at a
slope of 35◦. The annual solar radiation at 35◦ slope is 4.90 GJ/m2 (1.36 MWh/m2), and CO2 reduction
is PV 67.4 kg_CO2/m2 (Qel = 139.4 kWh/m2, ηel, year = 10.3%), ST 114.6 kg_CO2/m2 (Qth = 1846.6 MJ/m2,
ηth, year = 37.8%), PVT 144.7 kg_CO2/m2 (Qth = 980.5 MJ/m2, Qel = 173.4 kWh/m2).

The electrical and solar energy collection efficiencies calculated from Equations (4) and (5) are
smaller than the ones commonly known because the total time for the system to operate and produce
energy is not very long, and the amount of solar radiation projected at other times is only included in
the denominator of Equations (4) and (5).

At the slope of 90◦ installed on the wall, the CO2 reduction was the smallest, and the values of PV,
ST, and PVT were, respectively, 34.7%, 41.1%, and 39.8% lower than at the slope of 35◦. At a slope of
75◦, CO2 reduction is reduced by about 20%. If only installation is possible, 75◦ slope is preferable to
90◦, which is in close contact with a vertical wall.

Figure 5a shows the results of comparing the electricity production of PV and PVT systems
according to tilt angle. Overall, PVT showed about 1.2 times greater production than PV, regardless of
the slope. As shown in Equation (3), as the temperature increases, the efficiency modifier Xt decreases,
the efficiency decreases, and consequently electricity production decreases. In the case of PVT, the heat
medium lowers the temperature of the PV, so electricity production increases. In Reference [30], PV and
PVT efficiency were compared through experiments. Similar to the results of this paper, the electricity
production of PV and PVT systems during the day were calculated as 1030 and 1135 Wh, respectively
showing that PVT is about 1.1 times greater.
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and PVT; (b) energy production of ST and PVT; and (c) CO2 reduction of PV, ST, and PVT.

Figure 5b compares the heat production of the ST and PVT systems. Overall, PVT heat production
was half that of ST, regardless of tilt angle. When used separately, the solar collector receives solar
radiation directly, which is immediately converted to heat. In the case of PVT system, however,
heat production is reduced because solar radiation is indirectly collected using heat of the PV module
in the upper part.

Figure 5c compares the amount of CO2 reduction by PV, ST, and PVT systems. Since PVT can
produce electricity and heat simultaneously, it showed about 2.1 times greater CO2 reduction than PV.
ST reduction was about 1.6 times greater than that of PV.

It is very interesting that the ST installed on a vertical wall has almost the same and PVT has
1.4 times larger greenhouse gas reduction effect than the PV installed at an optimal inclination of 35◦.
Since this fact is almost without regard for the azimuthal angle, which is discussed below, it can be
concluded that, at any slope, the application of ST or PVT is advantageous for reducing CO2 wherever
hot water is used.

It should be noted that, due to the nature of the simulation, there is an error from the actual system
operation. In the case of PV system, among the various causes of loss, the factor that has the greatest
influence on performance is loss due to module temperature, inverter efficiency, and angle of incidence
change, which is considered through simulation [31]. However, performance degradation due to aging
or natural phenomena such as corrosion, breakage, and soiling is not considered. Especially, as shown
in Ref. [32], when the concentration of the fine dust is severe, the amount of power generation decreases
by about 17–25% due to the decrease in the amount of solar radiation in the atmosphere and the dust
accumulated on the surface of the PV module. In the case of ST system, in a previous study, it was
proved that the simulation showed thermal efficiency of 1.1% lower than the experiment.

3.3. Influence of Azimuth

Table 7 summarizes the annual PV, ST, and PVT system energy production and CO2 reduction
according to tilt and azimuth. The PV showed maximum values in the southern direction for all slopes,
and showed similar results in the southeastern and southwestern directions, which differed little from
the southern direction. ST and PVT show generally similar trends. The difference is small, but, for ST,
when at slopes of 75◦ and 90◦, heat production was highest when facing southwest.

Figure 6 shows the amount of CO2 reduction by azimuth. In all systems, maximum CO2 reduction
was at the slope of 35◦ facing south. At all slopes, the CO2 reduction is greatest in the direction of south
(S), followed by southwest (SW), southeast (SE), west (W), and east (E). SW CO2 reduction in ST is
slightly less than south, but not significantly. SE generally shows a decrease rate of less than 10% from
the south. SW was 0.8% and 3.4% higher than the south at ST slope of 75◦ and 90◦, respectively, but at
a negligible level. Note that it is generally better to set up facing west than east, especially for ST.
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Table 7. Energy production and CO2 reductions of the PV, ST, and PVT systems according to slopes
and azimuths.

Category

Energy (PV: kWh/m2, ST: MJ/m2)
CO2 Reduction
(kg_CO2/m2)

20◦ 35◦ 75◦ 90◦ 20◦ 35◦ 75◦ 90◦

PV ST PV ST PV ST PV ST

PV

E 118.6 111.9 83.3 70.3 57.3 54.1 40.3 34.0

SE 131.5 131.3 102.9 85.5 63.6 63.5 49.8 41.3

S 137.4 139.4 111.9 90.9 66.4 67.4 54.1 44.0

SW 132.7 133.0 105.8 88.1 64.2 64.3 51.2 42.6

W 120.2 114.3 86.4 73.0 58.1 55.3 41.8 35.3

ST

E 1430.6 1377.2 942.6 701.9 88.8 85.4 58.5 43.5

SE 1651.6 1698.8 1297.7 984.9 102.5 105.4 80.5 61.1

S 1756.1 1846.6 1427.8 1087.6 109.0 114.6 88.6 67.5

SW 1707.8 1793.8 1439.5 1125.5 106.0 111.3 89.3 69.8

W 1506.7 1499.0 1108.7 863.2 93.5 93.0 68.8 53.6

PVT

E 144.0 788.0 130.2 734.6 81.7 461.1 62.4 338.0 118.5 108.5 68.1 51.1

SE 162.3 897.2 159.4 900.9 118.2 655.0 93.1 488.6 134.2 133.0 97.8 75.3

S 170.9 949.9 173.4 980.5 136.9 751.3 107.9 563.6 141.6 144.7 112.8 87.2

SW 163.6 927.1 161.3 949.1 121.0 740.7 95.7 584.9 136.7 136.9 104.5 82.6

W 145.7 830.9 132.6 804.8 84.9 568.0 65.4 444.6 122.0 114.0 76.3 59.2

Energies 2020, 13, x FOR PEER REVIEW 9 of 12 

 

radiation in the atmosphere and the dust accumulated on the surface of the PV module. In the case 
of ST system, in a previous study, it was proved that the simulation showed thermal efficiency of 
1.1% lower than the experiment. 

3.3. Influence of Azimuth 

Table 7 summarizes the annual PV, ST, and PVT system energy production and CO2 reduction 
according to tilt and azimuth. The PV showed maximum values in the southern direction for all 
slopes, and showed similar results in the southeastern and southwestern directions, which differed 
little from the southern direction. ST and PVT show generally similar trends. The difference is small, 
but, for ST, when at slopes of 75° and 90°, heat production was highest when facing southwest. 

Table 7. Energy production and CO2 reductions of the PV, ST, and PVT systems according to slopes 
and azimuths. 

Category 
Energy (PV: kWh/m2, ST: MJ/m2) CO2 Reduction (kg_CO2/m2) 

20° 35° 75° 90° 20° 35° 75° 90° 
PV ST PV ST PV ST PV ST     

PV 

E 118.6  111.9  83.3  70.3  57.3 54.1 40.3 34.0 
SE 131.5  131.3  102.9  85.5  63.6 63.5 49.8 41.3 
S 137.4  139.4  111.9  90.9  66.4 67.4 54.1 44.0 

SW 132.7  133.0  105.8  88.1  64.2 64.3 51.2 42.6 
W 120.2  114.3  86.4  73.0  58.1 55.3 41.8 35.3 

ST 

E  1430.6  1377.2  942.6  701.9 88.8 85.4 58.5 43.5 
SE  1651.6  1698.8  1297.7  984.9 102.5 105.4 80.5 61.1 
S  1756.1  1846.6  1427.8  1087.6 109.0 114.6 88.6 67.5 

SW  1707.8  1793.8  1439.5  1125.5 106.0 111.3 89.3 69.8 

W  1506.7  1499.0  1108.7  863.2 93.5 93.0 68.8 53.6 

PVT 

E 144.0 788.0 130.2 734.6 81.7 461.1 62.4 338.0 118.5 108.5 68.1 51.1 

SE 162.3 897.2 159.4 900.9 118.2 655.0 93.1 488.6 134.2 133.0 97.8 75.3 

S 170.9 949.9 173.4 980.5 136.9 751.3 107.9 563.6 141.6 144.7 112.8 87.2 

SW 163.6 927.1 161.3 949.1 121.0 740.7 95.7 584.9 136.7 136.9 104.5 82.6 

W 145.7 830.9 132.6 804.8 84.9 568.0 65.4 444.6 122.0 114.0 76.3 59.2 

Figure 6 shows the amount of CO2 reduction by azimuth. In all systems, maximum CO2 
reduction was at the slope of 35° facing south. At all slopes, the CO2 reduction is greatest in the 
direction of south (S), followed by southwest (SW), southeast (SE), west (W), and east (E). SW CO2 
reduction in ST is slightly less than south, but not significantly. SE generally shows a decrease rate of 
less than 10% from the south. SW was 0.8% and 3.4% higher than the south at ST slope of 75° and 90°, 
respectively, but at a negligible level. Note that it is generally better to set up facing west than east, 
especially for ST. 

 
(a)  

(b) 
 

(c) 

Figure 6. CO2 reduction of the PV, ST, and PVT according to the slopes and the azimuths: (a) photovoltaic;
(b) solar thermal; and (c) photovoltaic thermal.

In conclusion, the decreased rates of reduction at SW and SE are within 10% of the value resulting
from the azimuth angle S. To maximize the reduction of CO2 in high-rise apartments, ST and PVT are
recommended for installation on walls or balconies with an azimuthal angle of S ± 45◦. By exceeding
this range, the amount of CO2 reduction drops significantly at all slopes. The shaded area in Figure 6
is therefore recommended.

4. Conclusions

The only renewable energy that can be applied to high-rise apartment structures is a PV panel or
solar collector installed on a wall or rooftop, or a PVT hybrid panel combining these two. We analyzed
the greenhouse gas reduction effect when a 4.18 m2 solar panel was applied. An annual simulation for
PV, ST, and PVT systems was performed using TRNSYS18 with weather data from Seoul. The results
are summarized as follows.
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1. All three systems showed maximum CO2 reduction values at 35◦ facing south, and PV, ST,
and PVT showed reductions of 67.4, 114.6, and 144.7 kg_CO2/m2

·year, respectively.
2. If installed on a vertical wall, the CO2 reduction will decrease by about 35–40% compared to the

maximum value, and the reduction will be about 20% less than maximum when installed at a
slope of 75◦. If it maintains harmony with the building, slightly inclined installation is better than
vertical installation.

3. Regardless of the slope and azimuthal angle, ST has 1.6 times and PVT has 2.1 times greater CO2

reduction than the PV which is most widely used in buildings.
4. It should be noted that ST (almost the same) and PVT (1.4 times) installed on vertical walls have a

greater greenhouse gas reduction effect than PV installed at the optimal slope of 35◦.
5. Since the decreased rate of CO2 reduction when installed facing SW and SE is within 10% of the

south facing reduction, ST and PVT are recommended for installation on walls or balconies with
an azimuthal angle of S ± 45◦.
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Nomenclature

QPVT Thermal energy production rate of PVT (W)
Qel Electrical energy production rate of PV (kWh/m2)
Qth Thermal energy production of PVT (MJ/m2)
A Area of PVT solar collector (m2)
Fr Collector heat removal factor
S Solar radiation absorbed by a collector (W/m2)
UL Collector overall heat loss coefficient (W/m2

·K)
Ti PVT inlet temperature (◦C)
Ta PVT ambient temperature (◦C)
PPVT Electric energy production rate of PVT (W)
τσ Transmittance-absorptance product of solar collector
IAM The incident angle modifier
Gt The total radiation incident upon the collector surface (kW/m2)
ηpvt PV cell efficiency of PVT (%)
ηc PV cell efficiency of PVT at reference condition (%)
Xt Efficiency modifier (temperature), STC (1/K)
Xr Efficiency modifier (incident radiation), STC (h·m2/kJ)
ηth, year Annual thermal efficiency of PV/PVT (%)
ηel, year Annual electrical efficiency of ST/PVT (%)
fyear Annual solar fraction
QDHW Rate of thermal energy required for hot water (W)
QAUX Rate of thermal energy used as auxiliary heater (W)
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